Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 1, 2026
-
Abstract The initial stellar carbon-to-oxygen (C/O) ratio can have a large impact on the resulting condensed species present in the protoplanetary disk and, hence, the composition of the bodies and planets that form. The observed C/Os of stars can vary from 0.1–1. We use a sequential dust condensation model to examine the impact of the C/O on the composition of solids around a solar-like star. We utilize this model in a focused examination of the impact of varying the initial stellar C/O to isolate the effects of the C/O in the context of solar-like stars. We describe three different system types in our findings. The solar system falls into the silicate-dominant, low-C/O systems which end at a stellar C/O somewhere between 0.52 and 0.6. At C/Os between about 0.6 and 0.9, we have intermediate systems. Intermediate systems show a decrease in silicates while carbides begin to become significant. Carbide-dominant systems begin around a C/O of 0.9. Carbide-dominant systems exhibit high carbide surface densities at inner radii with comparable levels of carbides and silicates at outer radii. Our models show that changes between C/O = 0.8 and C/O = 1 are more significant than previous studies, that carbon can exceed 80% of the condensed mass, and that carbon condensation can be significant at radii up to 6 au.more » « lessFree, publicly-accessible full text available February 27, 2026
-
Summary The human neocortex exhibits characteristic regional patterning (arealization) critical for higher-order cognitive function. Disrupted arealization is strongly implicated in neurodevelopmental disorders (NDDs), but current neocortical organoid models largely fail to recapitulate this patterning, limiting mechanistic understanding. Here, we establish a straightforward method for generating arealized organoids through short-term early exposure to anterior (FGF8) or posterior (BMP4/CHIR-99021) morphogens. These treatments created distinct anterior and posterior signaling centers, supporting long-lasting polarization, which we validated with single-cell RNA sequencing that revealed area-specific molecular signatures matching prenatal human cortex. To demonstrate the utility of this platform, we modeled Fragile X Syndrome (FXS) in organoids with distinct anterior and posterior regional identities. FXS organoids showed highly disrupted SOX4/SOX11 expression gradients along the anterior-posterior axis, consistent with alterations found in autism spectrum disorder (ASD) and demonstrate how regional patterning defects may contribute to NDD pathology. Together, our study provides a robust platform for generating neocortical organoids with anterior-posterior molecular signatures and highlights the importance of modeling NDDs using experimental platforms with neuroanatomic specificity.more » « lessFree, publicly-accessible full text available September 3, 2026
-
Abstract The temperatures of observed protoplanetary disks are not sufficiently high to produce the accretion rate needed to form stars, nor are they sufficient to explain the volatile depletion patterns in CM, CO, and CV chondrites and terrestrial planets. We revisit the role that stellar outbursts, caused by high-accretion episodes, play in resolving these two issues. These outbursts provide the necessary mass to form the star during the disk lifetime and provide enough heat to vaporize planet-forming materials. We show that these outbursts can reproduce the observed chondrite abundances at distances near 1 au. These outbursts would also affect the growth of calcium-aluminum-rich inclusions and the isotopic compositions of carbonaceous and noncarbonaceous chondrites.more » « less
An official website of the United States government

Full Text Available